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Abstract

Temperature-dependent viscosity variation effect on Bénard convection, of a gas or a liquid, in an enclosure filled with a porous med-
ium is studied numerically, based on the general model of momentum transfer in a porous medium. The exponential form of viscosity–
temperature relation is applied to examine three cases of viscosity–temperature relation: constant ðl ¼ lCÞ, decreasing (down to 0:13lC)
and increasing (up to 7:39lC). Effects of fluid viscosity variation on isotherms, streamlines, and the Nusselt number are studied. Appli-
cation of the effective and average Rayleigh number is examined. Defining a reference temperature, which does not change with the Ray-
leigh number but increases with the Darcy number, is found to be a viable option to account for temperature-dependent viscosity
variation.
� 2007 Published by Elsevier Ltd.
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1. Introduction

With interesting industrial applications such as filters
and catalytic reactors, underground contaminant trans-
port, oil and gas exploration and extraction, and grain
storage, natural convection in porous media is a topic of
increasing importance. The buoyancy-induced flow in a
cavity heated from below leads to patterns of convection
cells. The direction of fluid rotation alternates between
neighboring cells. Known in the literature as the Bénard
convection, the fluid motion starts only when the imposed
temperature difference exceeds a certain value. The
imposed temperature difference is generally represented
by the dimensionless Rayleigh number. The critical Ray-
leigh–Darcy number, which indicates the onset of Bénard
convection, is known to be equal to 4p2 for the Darcy flow
in a porous medium bounded by two infinite horizontal
isothermal plates. This problem is sometimes referred to
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as the Darcy–Bénard problem. Fundamentally, the
momentum transport process in a porous medium is sub-
ject to additional viscous and quadratic inertial effects, rep-
resenting deviations from the familiar Darcy law. The
effects of the quadratic inertia and the viscous terms on
natural convection were investigated by Lauriat and Pra-
sad [1], Kladias and Prasad [2], Khashan et al. [3], and
Lage [4]. On the other hand, the pioneering work of Vafai
and Tien [5], which was later revisited by Hsu and Cheng
[6], is widely accepted for using the volume-averaging tech-
nique coupled with semi-empirical formulas to arrive at the
two-dimensional momentum equation. Later reports of
Merrikh and co-workers [7–9] have elaborated on the
application of the above method, to name a few.

Modeling heat transfer in a porous medium, in its turn,
is a challenging problem. Involving various presumptions
and simplifications, formulating the thermal energy equa-
tion is a continuous source of dispute and discussion as
reflected in the large number of papers on the topic [10–23].

Our review of literature has indicated that most of the
reported studies on Bénard convection assume constant
viscosity. However, the fluid viscosity usually has a strong
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Nomenclature

b viscosity variation number
CF inertia coefficient
Da the Darcy number, Da = K/L2

E error in calculating Nu based on effective/aver-
age Ra, jNu� Nueff=amj=Nu

eNu error in calculating Nu based on reference tem-
perature approach eNu ¼ jNu� Nu�j=Nu

ewmax
error in calculating wmax based on reference tem-
perature approach ewmax

¼ jwmax � w�maxj=wmax

g gravitational acceleration, m/s2

k porous medium thermal conductivity, W/m K
K permeability, m2

L cavity height, m
Nu the Nusselt number
Nu* the Nusselt number with viscosity at reference

temperature
P* pressure, Pa
PrC modified Prandtl number, PrC ¼ /mC=a
Ra Rayleigh–Darcy number, Ra = DaRaf

Raf the fluid Rayleigh number, Raf ¼
gbðT H � T CÞL3=ðmCaÞ

Su source term for u equation
SW source term for vorticity transport equation
T* temperature, K
u* x*-velocity, m/s
u u*L/a
jU �j mean velocity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u�2 þ v�2
p

, m/s
jU j dimensionless mean velocity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

v* y*-velocity, m/s
v v�L=a

x* horizontal coordinate, m
x x*/L
y* vertical coordinate, m
y y*/L

Greek symbols

a thermal diffusivity of the porous medium, m2/s
b thermal expansion coefficient, K�1

Cu diffusion parameter, m2/s
K inertial parameter K ¼ CFL/2=ðPrC

ffiffiffiffi
K
p
Þ

h dimensionless temperature ðT � � T CÞ=ðT H � T CÞ
g kinematic viscosity ratio
l fluid viscosity, N s/m2

q fluid density, kg/m3

t kinematic viscosity, m2/s
u generic variable
w stream-function
wmax maximum value of stream-function
w�max wmax with viscosity at reference temperature
/ porosity
x vorticity

Subscripts

am arithmetic mean
ave average
C of cold wall
cp constant property
eff effective
H of hot wall
ref of reference temperature
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dependence on temperature. For example, the viscosity of
glycerin has a threefold decrease in magnitude for a
10 �C rise in temperature. This trend is not only observed
in highly viscous liquids, such as glycerin, but can also hap-
pen in other fluids such as water where the viscosity
decreases by about 240% when the temperature increases
from 10 �C to 50 �C. Such severe changes in the fluid vis-
cosity will result in different heat and fluid flow patterns
compared to constant property solutions [24]. Some
authors (see for example [25–28]) have investigated natural
convection with temperature-dependent viscosity while
keeping the other fluid properties constant (this assump-
tion is known to be valid for some fluids [29]).

A relatively important problem is the study of ore body
formation and mineralization in hydrothermal systems for
which the temperature-dependent viscosity variation
should be considered as noted by Lin et al. [24] who
reported analytical solutions, backed by some numerical
simulations, to claim that the viscosity variation effects will
destabilize the Darcy–Bénard convection. The reference
viscosity adopted in their Rayleigh–Darcy number was
based on the cold wall conditions.
On the other hand, in a notable study, commenting on
[25–27], Nield [30,31] argued that the effect of property var-
iation on free convection is artificial and should disappear
if one uses an effective Rayleigh number based on mean
values. Nield [31] showed that, if the mean values are used,
the critical Rayleigh number remains unaltered, which indi-
cates that the flow of a fluid with temperature-dependent
viscosity is no less stable than a constant property one.
The convection does not start at a smaller Rayleigh num-
ber with a variable property fluid as long as proper care
is applied when calculating the Rayleigh number. He also
concluded that when the viscosity varied within one order
of magnitude, the concept of effective Rayleigh number
would work while it was conceded that possible localized
flow in a part of the flow region might invalidate this argu-
ment if the property variation were more severe. It is inter-
esting to note that, in an example of a fluid clear of solid
material, for natural convection of corn syrup with a tem-
perature-dependent viscosity, even extreme viscosity varia-
tions, did not have a significant effect on the overall heat
transfer coefficient provided the properties were evaluated
at the mean temperature and a correction factor was used
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Fig. 1. Schematic of the problem under consideration.

Table 1
Summary of the solved governing equations

Equations u Cu Su

Continuity 1 0 0
x*-momentum u�=/ m � 1

q
op�

ox� �
mu�

K
� CF/u�jU�j

K1=2

y*-momentum v�=/ m � 1

q
op�

oy�
� mv�

K
� CF/v�jU �j

K1=2
þ gbðT � � T CÞ

Energy T* a 0
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[32]. This conclusion is in line with what was reported for
natural convection of air in a square enclosure [33]. Siebers
et al. [34] have come up with the same conclusion for lam-
inar natural convection of air along a vertical plate. Inter-
estingly, they had to apply a correction factor on their
Nusselt number for more intense convection case with
the flow becoming turbulent.

The problem becomes more complicated when one
observes that Guo and Zhao [28] evaluated the fluid prop-
erties at the arithmetic mean temperature (the mean of hot
and cold wall temperatures in a laterally heated box) but
their results still showed significant differences between
constant- and variable property flows. For example, for
Da = 10�4 and Ra = 10, the Nusselt number was about
75% higher than the constant property case.

This gives us the impression that more work on the issue
is called for. A numerical simulation of the problem is pre-
sented here to investigate the effects of temperature-depen-
dent viscosity on natural convection in a square porous
cavity. The well-known problem of Bénard convection in
a porous cavity is undertaken based on a non-Darcy flow
model similar to that of [9]. However, our work is different
from the previous studies addressing the variable viscosity
effects on the Bénard convection as we considered the gen-
eral model including the viscous and (both quadratic and
convective) inertia terms. Several models have been used
in the literature to account for the viscosity variation with
the temperature. The exponential form of viscosity–tem-
perature behavior is reported to be quite effective for most
common fluids [35]. This model is applied here for flow of
an incompressible gas or liquid. The viscosity of a gas usu-
ally increases with temperature and the viscosity of a liquid
does the reverse. Both cases are considered here.
2. Model equations

Incompressible natural convection of a fluid with tem-
perature-dependent viscosity in a square enclosure filled
with homogeneous, saturated, isotropic porous medium
with the Oberbeck–Boussinesq approximation for the den-
sity variation in the buoyancy term is considered, as shown
in Fig. 1. It is assumed that the solid matrix and the fluid
are in local thermal equilibrium. The equations that govern
the conservation of mass, momentum and energy can be
written as follows

oðu�uÞ
ox�

þ oðv�uÞ
oy�

¼ o

ox�
Cu

ou
ox�

� �
þ o

oy�
Cu

ou
oy�

� �
þ Su;

ð1Þ

where u stands for the dependent variables u*, v*, T*; and
Cu, Su are the corresponding diffusion and source terms,
respectively, for the general variable u, as summarized in
Table 1. Other parameters are defined in the
Nomenclature.

The following exponential variation in kinematic viscos-
ity ratio (with temperature) is assumed
g ¼ m
mC

¼ expðbhÞ; ð2Þ

where the viscosity variation number, b, is positive/nega-
tive in case of a gas/liquid whose viscosity increases/de-
creases with an increase in temperature. The cold wall
condition is assumed as our reference state so that mC is
the kinematic viscosity measured at TC. Our dimensionless
temperature is h ¼ ðT � � T CÞ=ðT H � T CÞ. One also notes
that the Taylor series expansion for very small values of
b leads to linear or inverse linear relations for viscosity with
temperature as

m ¼ mCð1þ bhÞ;
1

m
¼ 1

mC

ð1� bhÞ;
ð3-a;bÞ

similar to the models applied in [36–39].
The dimensionless stream-function is defined as

u ¼ ow
oy
;

v ¼ � ow
ox
:

ð4-a;bÞ

With this definition, the continuity equation is satisfied
identically. The dimensionless coordinates are ðx; yÞ ¼
ðx�; y�Þ=L and the velocity components are ðu; vÞ ¼
ðu�; v�ÞðL=aÞ.

Taking the curl of x*- and y*-momentum equations and
eliminating the pressure terms, one finds the dimensionless
vorticity transport equation as
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u � rx ¼ PrCððr2x� x=DaÞebh � KjU jxþ SwÞ; ð5Þ
where

Sw ¼
og
ox

ow
ox
þ og

oy
ow
oy

� �
=Daþ K

ojU j
ox

ow
ox
þ ojU j

oy
ow
oy

� �

þ Raf
oh
ox
� o

oy
og
ox

o
2w

oxoy
þ og

oy
o

2w
oy2

� ��

þ o

ox
og
ox

o2w
ox2
þ og

oy
o2w
oxoy

� �
� og

ox
ox
ox
� og

oy
ox
oy

�
: ð6Þ

The Rayleigh–Darcy number, or simply Ra hereafter, is de-
fined as Ra = DaRaf.

The vorticity directed in z direction is defined as

x ¼ �r2w: ð7Þ
The thermal energy equation now takes the following form:

u � rh ¼ r2h: ð8Þ
The average Nusselt number, as the ratio of the actual heat
transfer to that of pure conduction, is defined as [3]

Nu ¼
Z 1

0

ohðx; 0Þ
oy

dx: ð9-aÞ

The problem is now to solve Eqs. (5–9) subject to no-slip
boundary condition on the walls, i.e. u ¼ v ¼ 0, and the
following thermal boundary conditions

oh
ox
¼ 0; vertical walls;

h ¼ 0; top wall;

h ¼ 1; bottom wall:

ð9-b–dÞ
Table 3
Present wmax values for Da = 10�6 versus those in the literature for the
Darcy model

Ra Present Ref. [45] Ref. [43]

50 2.096 2.092 2.112
100 5.319 5.359 5.377
200 8.845 8.931 8.942
250 10.131 10.244 10.253
300 11.252 11.394 11.405
3. Numerical details

Numerical solutions to the governing equations for vor-
ticity, stream-function, and dimensionless temperature are
obtained by finite difference method, using the Gauss–Sei-
del technique with SOR. The governing equations are dis-
cretized by applying second-order accurate central
difference schemes. For the numerical integration, algo-
rithms based on the trapezoidal rule are employed similar
to [40]. Details of the vorticity-stream-function method,
and applied boundary conditions may be found in [41]
and are not repeated here.

All runs were performed on a 61 � 61 grid. The Darcy
number ranges from 10�6 to 10�3 while the reference Pra-
ndtl number is fixed at unity similar to Merrikh and
Table 2
Present Nu values for Da = 10�6 versus those in the literature for the Darcy m

Ra Present Ref. [45]

50 1.464 1.443
100 2.643 2.631
200 3.782 3.784
250 4.15 4.167
300 4.456 4.487
Mohamad [9]. The inertia coefficient, CF is fixed at 0.56
similar to Lage [4]. Grid independence was verified by run-
ning different combinations of Da, Raf, and b on three dif-
ferent grid sets 41 � 41, 61 � 61 and 91 � 91. Less than 1%
difference between results obtained on different grids is
observed. The convergence criterion (maximum relative
error in the values of the dependent variables between
two successive iterations) in all runs was set at 10�5.

A test on the accuracy of the numerical procedure is
provided by comparing the results against those for special
cases quoted in the literature, i.e. [42–45]. This comparison
for the average Nusselt number and the maximum stream-
function value is shown in Tables 2 and 3, respectively.
4. Results and discussion

Figs. 2 and 3 are designed to reflect the effects of the key
parameters (being b, Da, Ra, and Raf on isotherms and
streamlines. The porous medium Rayleigh number, Ra, is
50 and 300, respectively, for Figs. 2 and 3. Both extreme
positive and negative values of b are included to represent
fluids with viscosities increasing and decreasing with tem-
perature. The results of isotherms and streamlines for dif-
ferent values of Da (Da = 10�3 and 10�4) are plotted on
different charts in each figure. To maintain a constant Ra

value, the value of Raf is altered along with Da. One can
easily see that with negative values of b, representing vis-
cosity decreasing with an increase in temperature, the flow
patterns are stronger. On the other hand, the converse can
be deduced with positive values of b. The constant property
solution is mostly found to be somewhere between the two
cases, as expected. In all of our contour plots the contours
are plotted at equal increments of the plotted variable.
Comparing Figs. 2 and 3, it is clear that with a fixed value
of Da, an increase in either Ra or Raf leads to stronger con-
vective flows, as expected. Examining the streamlines,
which are normalized by wmax, it is quite clear that with
odel

Ref. [42] Ref. [43] Ref. [4] (Da = 10�6)

1.45 – 1.44
2.676 2.651 2.62
3.813 3.808 3.762
– – 4.139
– 4.514 –
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Fig. 2. (a) Streamlines for Ra = 50 and Da = 0.001, Raf ¼ 50; 000 (for Figs. 2–3 dashed, solid, and dash-dotted lines represent b = �2, 0, and 2,
respectively). (b) Isotherms for Ra = 50 and Da = 0.001, Raf ¼ 50; 000. (c) Streamlines for Ra = 50 and Da = 0.0001, Raf ¼ 500; 000. (d) Isotherms for
Ra = 50 and Da = 0.0001, Raf ¼ 500; 000.
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positive values of b the core region moves toward the cold
wall while with positive counterparts this region tends to be
stretched downward to form an elliptical pattern and this
elliptical pattern is more identifiable for Ra = 300. More-
over, with this Rayleigh number, moving from constant
property to b = �2, the change in the size of the core
region is less than the one associated with the change in
the opposite direction, i.e. from b = 0 to b = 2. For
Ra = 50 and b = 2, with either values of Da = 10�3 or
10�4, the isotherms are nearly horizontal implying that
there is no convection flow. On the other hand, with
b = �2 compared to the other two values of b, regardless
of Ra and Da values, the convection patterns are stronger
and isotherms are more stretched towards the horizontal
walls.

Fig. 4 shows the line diagrams of the dimensionless hor-
izontal mid-plane velocity, vðx; 0:5Þ, when b varies from �2
to 2 with Da = 10�3 and for two cases of Ra = 50 and 300.
As expected, a higher value of Ra promotes mixing and this
is manifested as an increase in the maximum vertical veloc-
ity. It is interesting to note that with b = 2 the flow nearly
subsides, with the mid-plane velocity vanishing across the
entire section, while for b = �2 the peak is nearly five times
higher than that of the constant property case. However,
for Ra = 300, the ratio of the velocity peaks is not that high
and it figures out at 1.5, approximately.
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Fig. 5 shows the dependence of Nu and wmax on b for dif-
ferent values of Da and Ra. Nu = 1 means the actual heat
transfer is due to conduction only, i.e. Nu only exceeds 1
when there is convection. As seen, both Nu and wmax

decrease with an increase in the absolute value of b. It is
interesting that with Ra = 50, for which a convective flow
pattern is expected based on constant property solutions,
with positive b values of 0.1, 0.4, and 0.5 the flow nearly
subsides, for Da values of 10�3, 10�4, and 10�6, respec-
tively. This observation is based on the near-unity Nusselt
numbers (Fig. 5a) suggesting the dominance of the conduc-
tion heat transfer and the stream-function values (Fig. 5b)
calculated much lower than their constant property coun-
terparts. However, for Ra = 100 the value of b needs to
be as high as 1.7 for the same phenomenon to occur. It is
observed that increasing Ra, raises the Nu level but, inter-
estingly, moving to other Ra values with a fixed Da, the
slope of Nu–b plots will remain almost the same. Interest-
ingly, wmax shows similar behavior; however, it is observed
that for the lowest Darcy value, Da = 10�6, the wmax–b
curve becomes a concave one instead of the convex distri-
bution formed for higher Da values.

Based on the observation that the Nu–b plots are paral-
lel for a fixed Da with changing Ra, it is tempting to argue
that defining an average Rayleigh number, the Nu–Ra rela-
tion could remain, to a good approximation, independent
of the changes in viscosity. In the preceding discussion,
the Rayleigh numbers were calculated at the cold wall
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temperature. The apparent destabilizing effect of decreas-
ing viscosity was observed in all figures when the Rayleigh
number was calculated this way. Let us now see what hap-
pens when an average/effective Rayleigh number is used. It
is instructive to note that there are two approaches to
account for variable property (forced or natural convec-
tion) problems. The first one is evaluating the fluid prop-
erty at a reference temperature. The second one is
evaluating the fluid property at a reference temperature
and using a correction factor to account for property vari-
ations. More details may be found in Kakac� and Yener
[29].

Nield [30] recommends using a harmonic average for the
fluid viscosity in the effective Rayleigh number. Since the
Rayleigh number is inversely proportional to viscosity,
we define our effective Rayleigh number as the arithmetic
mean of the Rayleigh numbers at two extreme
temperatures

Raeff ¼
RaC þ RaH

2

� �
: ð10Þ

The subscripts ‘H’ and ‘C’ are applied to show that heated
and cooled wall temperatures are applied to evaluate the
viscosity. One notes that RaC ¼ Ra, as applied so far, and
that using Eq. (2) one has

Raeff ¼ Rað1þ expð�bÞÞ=2: ð11Þ

The effective Rayleigh numbers calculated by the above
equation are shown in our Table 4 as Case 1.

On the other hand, Guo and Zhao [28] proposed the
arithmetic mean temperature as the reference temperature
and evaluated the viscosity at that temperature. However,
when using this mean temperature, the Nusselt number



Table 4-A
Calculation of the effective and average Rayleigh numbers and Nu/Nucp for (Da = 10�3, Ra = 50)

b Numerical Case 1 Case 2

Nu/Nucp Raeff Nu/Nucp E (%) Raam Nu/Nucp E (%)

�2 1.845 209.73 2.517 36.42 135.92 2.07 12.17
�0.5 1.266 66.22 1.327 4.82 64.2 1.291 1.97

0.5 0.899 40.16 0.9 0.11 38.94 0.893 0.67
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showed notable differences from the constant property
case. This behavior could be expected, to some extent, in
the light of [32], where the authors recommended, for the
clear fluid case, adding a viscosity fraction to the constant
property Nu–Ra correlations to make them useful in vari-
able property cases.

All in all, for this case, the average Rayleigh number
reads

Raam ¼ Ra expð�0:5bÞ; ð12Þ

wherein Raam is the Rayleigh number with the viscosity
being evaluated at the arithmetic mean temperature and
is referred to as Case 2 in Table 4.

Using the Taylor series, it is an easy task to show that
for small b values both of the two approaches lead to the
same answer being

Raam ¼ Raeff ¼ Rað1� 0:5bÞ: ð13Þ

Nonetheless, for higher values of b the two methods will
lead to very different results as shown in Table 4 which lists
the ratio of the variable property Nusselt number divided
by that of constant property, Nu/Nucp, versus average/
effective Rayleigh number. As seen, the results are closer
for small values of b, however, increasing b not only the
two methods will diverge but also they lead to erroneous
results compared to our numerical solutions. It could be
concluded that the concept of an effective Rayleigh num-
ber, though proven to be useful to show the onset of con-
vection for a porous layer heated form below, is restricted
to the case where an inverse linear viscosity–temperature
relation is assumed (and is equivalent to our model with
very small b according to Eq. (3). On the other hand, the
average Rayleigh number approach leads to better results
for low Ra and b cases and increasing either of the two
parameters restricts the application of this method.
According to Table 4, none of the above methods are accu-
rate and there is a need for another alternative.

The issue is finding a reference temperature to evaluate
the viscosity so that the results will be valid for the entire
Table 4-B
Calculation of the effective and average Rayleigh numbers and Nu/Nucp for (D

b Numerical Case 1

Nu/Nucp Raeff Nu/Nucp

�2 1.4264 419.45 1.8219
�1 1.25 185.91 1.362

1 0.703 68.39 0.766
b-domain that is considered in this analysis. Based on our
numerical results, it is reasonable to expect this reference
temperature to change with the porous medium permeabil-
ity, which may be represented by the Darcy number. By
observation of the results, we have found this reference
temperature to change with the Darcy number as follows

T ref ¼ T C þ 0:45ðT H � T CÞ for Da ¼ 10�6;

T ref ¼ T C þ 0:4ðT H � T CÞ for Da ¼ 10�4;

T ref ¼ T C þ 0:35ðT H � T CÞ for Da ¼ 10�3:

ð14-a;b;cÞ

Substitution of the above reference temperature in Eq. (2),
will lead to the following average Rayleigh numbers

Raave ¼ RaC expð�0:45bÞ for Da ¼ 10�6;

Raave ¼ RaC expð�0:4bÞ for Da ¼ 10�4;

Raave ¼ RaC expð�0:35bÞ for Da ¼ 10�3:

ð15-a;b;cÞ

Table 5 is designed to show the results of our constant
property calculation with viscosity being evaluated at the
above reference temperature. It seems that our predictions
are within good agreement with the maximum error of 10%
for Nu and 12% for wmax for the extreme viscosity variation
cases. It may be concluded that one can still apply the
constant property solutions available in the literature with
the only modification that the fluid property needs to be
evaluated at the reference temperature recommended here.
Another point worthy of comment is that our results are
limited within a range of the Darcy numbers being
those relevant to clear fluid (1/Da ? 0) and Darcy flow
model (Da ? 0). For these two cases the reference temper-
atures are T ref ¼ T C þ 0:5ðT H � T CÞ and T ref ¼ T Cþ
0:25ðT H � T CÞ with the former being recommended indi-
rectly by Nield [30] (for small values of b) for the Darcy
flow model and the latter proposed by Zhong et al. [33]
for the clear fluid natural convection in a laterally heated
box. It is interesting that though the flow structure is com-
pletely different in a lateral and bottom heating case, as
noted by Nield [46] and implied by Bejan [41], the limiting
a = 10�4, Ra = 100)

Case 2

E (%) Raam Nu/Nucp E (%)

27.73 271.83 1.579 10.72
8.9 164.87 1.2922 3.35
8.9 60.65 0.688 2.1



Table 5
Application of the reference temperature approach adopted here for some values of Da, Ra, and b

Da Ra b Raave Nu* Nu eNu (%) w�max wmax ewmax
(%)

10�6 50 �2 122.98 2.963 3.013 1.66 6.486 7.206 9.99
�1 78.42 2.223 2.308 3.68 4.162 4.505 7.61

100 �2 245.96 4.096 4.01 2.14 9.991 11.162 10.49
�1 156.83 3.359 3.395 1.06 7.483 7.882 5.33

1 63.76 1.863 1.813 2.71 3.2 3.128 5.06
200 �2 491.92 5.248 5.02 4.54 14.51 15.797 8.15

�1 313.66 4.498 4.486 0.27 11.429 11.911 4.05
1 127.53 3.02 2.93 2.93 6.445 6.38 1.01
2 81.31 2.283 2.16 5.71 4.329 4.423 2.12

300 �1 470.49 5.177 5.14 0.71 14.173 14.702 3.59
1 191.29 3.684 3.58 2.91 8.533 8.486 0.55
2 121.97 2.95 2.77 6.5 6.227 6.416 2.94

10�4 50 �2 111.28 2.584 2.62 1.37 5.32 5.928 10.23
�1 74.59 1.994 2.08 4.12 3.624 3.984 9.04

100 �2 222.55 3.563 3.47 2.86 8.536 8.941 4.53
�1 149.18 3.004 3.04 1.2 6.629 6.933 4.38

1 67.03 1.828 1.71 6.89 3.156 2.878 9.66
200 �2 445.11 4.507 4.34 3.85 12.287 12.4 0.91

�1 298.36 3.974 3.953 0.54 10.07 10.272 1.97
1 134.06 2.84 2.74 3.64 6.169 5.941 3.83
2 89.87 2.274 2.1 8.29 4.404 4.124 6.79

300 �1 447.55 4.514 4.471 0.96 12.318 12.465 1.18
1 201.1 3.414 3.31 3.14 8.009 7.863 1.85
2 134.8 2.84 2.61 8.8 6.169 5.981 3.15

10�3 50 �2 100.69 2.027 2.086 2.83 3.981 4.374 8.98
�1 70.95 1.592 1.69 5.8 2.74 3.011 9

100 �2 201.38 2.79 2.758 1.16 6.622 6.769 2.17
�1 141.91 2.417 2.459 1.71 5.276 5.495 3.99

1 70.47 1.587 1.442 10 2.612 2.375 9.97
2 49.66 1.11 1.03 7.77 0.911 0.824 10

200 �2 402.76 3.505 3.412 2.72 9.619 9.44 1.9
�1 283.81 3.151 3.156 0.2 8.074 8.168 1.15

1 140.94 2.41 2.305 4.56 5.27 4.986 5.69
2 99.32 2.01 1.827 10 3.901 3.535 10.35

300 �1 425.72 3.559 3.551 0.25 9.873 9.885 0.12
1 211.41 2.846 2.755 3.3 6.486 6.633 2.22
2 148.98 2.469 2.244 10 5.463 5.037 8.46
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reference temperature for the clear fluid case is the same.
The dependence of the reference temperature on the Darcy
number is expected as each Da value is associated with a
unique convection pattern. For the sake of simplicity, we
propose a rough and ready estimation for the dependence
of the reference temperature on the Darcy number as
follows

T ref ¼ T C þ 0:5ð1� 0:848Da0:15ÞðT H � T CÞ: ð16Þ
This is found by fitting a power-curve (�Daq) on the coef-
ficients used in Eq. (14a–c).

The average Rayleigh number, Eq. (15), now takes the
following form

Raave ¼ RaC expð�0:5bð1� 0:848Da0:15ÞÞ: ð17Þ

However, one should be warned that these last two equa-
tions are valid for the range of the Darcy number consid-
ered in our study being 10�3–10�6. One notes that for
small values of b with Da = 0 the average Rayleigh number
tends to the effective Rayleigh number of Nield [30].
5. Conclusion

Numerical simulation of Bénard natural convection in a
bottom heated porous-saturated square enclosure is pre-
sented based on the general momentum equation. The
exponential model for the variation of viscosity with the
temperature is applied. A reference temperature approach
is undertaken to account for viscosity variation. It is found
that the reference temperature, at which the fluid properties
should be evaluated, is a decreasing function of the Darcy
number and is approximately independent of the other
parameters considered here. Applying this reference tem-
perature, one can still use the constant property results
and this, in turn, will reduce the computational time and
expense required for solving a variable property problem.
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